香港都會大學 HONG KONG METROPOLITAN UNIVERSITY

Microbial communities in mangrove ecosystem differs by intertidal location and microhabitat of pneumatophores

Varsha Bohra & Fred Wang-Fat Lee*

School of science and Technology, Hong Kong Metropolitan University, Hong Kong, SAR China

INTRODUCTION

- Mangrove ecosystem supports rich prokaryotic diversity (solely comprising more than 95% of the total microbial biomass) which remains yet to be explored
- The high abundance of prokaryotes is associated with their role in various biogeochemical processes operating in mangrove ecology.
- Mangroves are characterized by periodic tidal cycles which induce wide variation in environmental conditions across small spatiotemporal scales.
- This leads to the formation of characteristic microbial zones with variable community structure and function.

SAMPLING PLAN AND METHODOLOGY

- Ting Kok mangrove was divided into three different zones: mudflat (TK MF), mangrove (TK M) and pneumatophore associated sediments (TK PSAM).
- The metagenomic DNA was extracted for library preparation and sequencing using Illumina platform DNBSEO- G400
- Taxonomic and functional classification of the metadata was performed using BLASTX against the RefSeq and KEGG database on MG-RAST server

CONCLUSION

- Proteobacteria was the most dominant phyla in all the microhabitats with Bacteroidetes, the second most, Firmicutes (TK_MF_ and TK_M_) and cyanobacteria (TK_PSAM) were the third abundant phyla.
- Archaeal distribution with the most abundant Thaumarchaeota remained uniform in all the three habitats.
- Genes associated with CO₂ to methane production pathway of methanogenesis was dominant in all three zones, with relatively high proportion in TK MF and TK M
- The relative abundance of nitrate reduction pathway of nitrogen metabolism was high in TK PSAM whereas nitrogen fixation and the denitrification pathway were high in TK_MF_ and TK_M_ samples.
- This is the first attempt to unveil prokaryotic zonation in mangrove ecology using NGS sequencing.

Inside to outside: TK MF , TK M and TK PSAM

Α

Х

0

N

0

Μ

С

U

Ν

С

Т

0

Ν

Α

Pathway	Enzymes	TK_MF_	TK_M_	TK_PSAM_	Pathway	Enzymes	TK_MF_	TK_M_	TK_PSAM_
Carbon Dioxide Methane Production Pathway	Formylmethanofuran dehydrogenase (A-E, G) [EC:1.2.99.5]	1.69	1.64	0.27	N- fixation	Nitrogenase (D, H, K)	12.74	12.22	2.01
	Formylmethanofuran tetrahydromethanopterin-N-formyltransferase				pathway	[EC:1.18.6.1]	12.74	13.22	5.91
	[EC:2.3.1.101]	0.40	0.35	0.11	Assimilatory Nitrate Reduction Pathway Dissimilatory Nitrate Reduction Pathway	Nitrite reductase (NAD(P)H) (B,D) [EC:1.7.1.4]	7.76		
	Methenyltetrahydromethanopterin cyclohydrolase [EC:3.5.4.27]	0.34	0.32	0.07				9.01	24.45
	Tetrahydromethanopterin S-methyltransferase (A,H) [EC:2.1.1.86]	0.25	0.33	0.00					
	Heterodisulfide reductase subunit (A-D) [EC:1.8.98.1]	34.89	33.61	2.09					
	5,10-Methylenetetrahydromethanopterin reductase [EC 1.5.98.2]	0.00	0.00	0.00		Nitrate reductase [EC:1.7.99.4]	21.21	20.14	15.12
	Methylenetetrahydromethanopterin dehydrogenase [EC 1.5.98.1]	0.00	0.00	0.00		Nitrite reductase (NAD(P)H)	7.76	9.01	24.45
	5,10-Methenyltetrahydromethanopterin hydrogenase [EC 1.12.98.2]	0.00	0.00	0.00		(B,D) [EC:1./.1.4]			
	Methyl coenzyme M reductase [EC 2.8.4.1]	0.00	0.00	0.00		ammonia forming) [EC 1 7 2 2]	0.00	0.00	0.00
Acetate to Methane Production Pathway	Tetrahydromethanopterin S-methyltransferase (A,H) [EC:2.1.1.86]	0.25	0.33	0.00	Denitrificatio n Pathway	Nitrate reductase [EC:1 7 99 4]	21.21	20.14	15 12
	Heterodisulfide reductase subunit (A-D) [EC:1.8.98.1]	34.89	33.61	2.09		Nitrite reductase (NO-forming)	21.21	20.14	15.12
	acetate kinase [EC 2.7.2.1]	0.00	0.00	0.00		[EC:1.7.2.1]	2.81	3.70	0.83
	phosphate acetyltransferase [EC 2.3.1.8]	0.00	0.00	0.00		Nitrous-oxide reductase [EC:1.7.2.4]	6.75	7.85	1.40
	acetyl-CoA synthetase [EC 6.2.1.1]	0.00	0.00	0.00					
	acetyl-CoA decarboxylase [EC 2.3.1]	0.00	0.00	0.00		Nitric oxide reductase [EC	C 0.00	0.00	0.00
	methyl coenzyme M reductase [EC 2.8.4.1]	0.00	0.00	0.00		1.7.2.5]			
	Methane metabolisn	Nitrogen metabolism							

REFRENCE

ACKNOWLEDGEMENT This work was patially supported by a grant from the Research Grants

Council of the Hong Kong Special

Administrative Region, China

(UGC/FDS16/M06/21)

- Basak, P., Majumder, N.S., Nag, S., Bhattacharyya, A., Roy, D., Chakraborty, A., SenGupta, S., Roy, A., Mukherjee, A., Pattanayak, R. 2015. Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microbial ecology, 69, 500-511.
- Bohra, V., Dafale, N.A., Purohit, H.J. 2019b. Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach. Archives of Microbiology, 201, 1385-1397
- Dafforn, K.A., Baird, D.J., Chariton, A.A., Sun, M.Y., Brown, M.V., Simpson, S.L., Kelaher, B.P., Johnston, E.L. 2014. Faster, higher and stronger? The pros and cons of molecular faunal data for assessing ecosystem condition. in: Advances in Ecological Research, Vol. 51, Elsevier, pp. 1-40.
 - Sanka Loganathachetti, D., Sadaiappan, B., Poosakkannu, A., Muthuraman, S. 2016. Pyrosequencing-based seasonal observation of prokaryotic diversity in pneumatophore-associated soil of Avicennia marina. Current microbiology, 72, 68-74.